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An improved version of a cluster-effective-field theory for spin glasses, namely 
the double-cluster approximation, is formulated. The present version is based 
not on the se/f-consistency condition, but on the double-cluster-consistency 
condition. The advantages of the approximation combined with the coherent- 
anomaly method are discussed. The critical data of the spin-glass susceptibility 
are estimated for the two-, three-, and four-dimensional +_J models. 
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1. I N T R O D U C T I O N  

Since the development of the series-expansion analysis of fractional critical 
exponents (see ref. 1 for review), mean-field-type theories have rated low, 
because each of them yields only classical exponents. However, the mean- 
field theory is still important, for it can present a physical picture of the 
mechanism of even exotic critical phenomenal2); it shows vividly how 
symmetry breaks spontaneously. ~2) 

Recently one of the present authors (M.S.) proposed the coherent- 
anomaly method (CAM). ~3'4) Once a systematic series of mean-field or 
effective-field approximations is constructed, one can estimate nontrivial 
critical exponents accurately with the CAM by observing how fractional 
fluctuations emerge in mean-field data. The remaining problem is how to 
obtain such a series of approximations. The cluster-mean-field theory based 
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on the self-consistency condition in each cluster, first proposed by Weiss, (s) 
has been frequently used.  (3'4'6 9) Another category of effective-field 
approximation, which is called here the double-cluster approximation 
(DCA), has been also applied to the CAM in some works. ~176 The DCA is 
based on the double-cluster consistency condition. (1~ This equates the 
relevant local order parameters for two different clusters A and B, that 
is, (QA)= (QB). The DCA itself has a long history. (H) The cluster- 
variational method (see ref. 12 for review) is also equivalent to it in some 
cases. (13) Some properties of the DCA favorable to the CAM have been 
lately explored. (14) 

In the previous paper (9) we formulated a cluster-effective-field theory 
for spin glasses, which is based on the self-consistency condition for each 
single cluster. In the present paper the DCA for spin glasses is formulated. 
With the same amount of calculations as in the previous work, the errors 
of critical-data estimates are remarkably reduced, especially for the three- 
dimensional + J model. The formulation is given in Section 2. In Section 3 
the present approximation is compared with the one proposed previously (9) 
and advantages of the DCA are explained phenomenologically. In 
Section 4 the critical data estimated with CAM analyses are presented for 
the two-, three-, and four-dimensional _ J  models. A discussion on error 
estimations of critical data is given in the Appendix. 

2. D O U B L E - C L U S T E R  A P P R O X I M A T I O N  

In the present section two kinds of double-cluster approximation 
(DCA) for spin glasses are formulated. 

We consider two clusters s = A, B embedded in a spin-glass system of 
infinite size, and trace out spin degrees of freedom outside the clusters. 
Then we obtain the following effective Hamiltonians: 

~aeff=---Z JijeraiaY--#B H E aai--#B E H~fr(i) aai 
( i , j )  i~g2 iEOK2 

(1) 

as was shown in the previous paper. (9) The first term of the rhs is the 
cluster Hamiltonian. The exchange interactions {J~} are distributed in 
magnitude independently with a common probability distribution P(Jij). 
The second term is the Zeeman energy produced by a magnetic field 
applied to the bulk of the cluster. The effect of magnetic fields applied to 
traced-out spins outside the cluster is propagated to the surface of the 
cluster through the random interactions, and causes the third term of the 
rhs of (1). Then the effective fields { H~rf(i ) } should be considered (9) to have 
distribution in magnitude, which originates in the probability distributions 
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of the traced-out interactions outside the clusters. In the following the angle 
brackets <... ) denote the thermal average with respect to the Hamiltonian 
(1), while the square brackets l ' ] , v  denote the sample average with 
respect to the distribution P(J). 

In the paramagnetic phase the effective fields are expected to follow (15) 
the Gaussian distribution, and only the second moments { l- <a ~ >2]~v } and 
{l'(/'[eOff)2]av} are important. (9) From this point of view, the following 
(I?A[ + ]~BI) number of parameters are unknown: 

n B �9 2 FHA r ViEaA; l' eff(Y) ]av, Vj6aB (2) L efft ! Jay, 

Now we make the double-cluster-cons&tency (DCC) condition to determine 
the parameters (2) as follows: 

l, <0"~ >2]av = [ <0-~ >21av (3',I 

[<aA >23av__ [<~rA >23~v___ . . . .  [<~r#>23~ = ~ 2 l,<a)2 ) ] ~ =  ... (4) 

where a~ denotes the spin at the center of the cluster f2, while il, i2 .... ~ •A 
a n d j l , j 2  .... 6dB. 

As in the previous paper, ~ the local order parameters {[<o-o)2]av } 
in the high-temperature phase can be expanded with respect to an 
applied magnetic field H and the effective fields Hef f. In the case that the 
probability distribution P(J) is symmetric, the expansion yields (9) 

2 n = [ < 0"0 O" i >o lav  
i~2  

+ 2 " av [ n e f f ( l )  lav "t- 0 ( H  4) (5)  
i e gE2 

Here < ' " ) o  denotes the thermal average with respect to the cluster 
Hamiltonian (1) with no applied and effective fields. Parameters appearing 
in the condition (4) can also be expressed in terms of similar correlation 
functions. Substituting these expansions in (3) and (4), we obtain a set of 
simultaneous equations, which can be written in the following form with 
the relevant matrix M: 

M x  = H2a + 0 ( H  4) (6) 

The solution of Eq. (6) determines the parameters (2) as functions of H 2. 
At a temperature Ts% even an infinitesimal H causes finite values of the 
parameters (2). This instability corresponds to spontaneous symmetry- 

D (Here and in the following the super- breaking, i.e., det M = 0 at T-- Tsa.  
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script D indicates that the quantity is derived through the DCA.) The 
approximate spin-glass susceptibility is given by 

ZSGD _= N#~(a/a(H2))[<aoA)2]avlH=0 (7) 

The expansion (5) and the solution of (6) yield the explicit form of (7), 
which has a singularity at T =  TsD~. 

Instead of (3) and (4), another kind of DCC condition can be made. 
Assume ad hoe that, at the boundary sites of the clusters t2 = A, B, all the 
effective fields per free bond have the same probability distribution. Then 
the deviations or the second moments of the distributions can be set so that 

Vi6 0A, OB, [He~rf(i)2] ~v = w,[(Hefr)2]~v (8) 

Here wi is the number of free bonds on the boundary site i. Now in this 
formulation only one parameter [(Herr)2]~v is to be determined. Then the 
following DCC condition is made: 

[<aoA)=]~. -- [<ag)2] .v  (9) 

The substitution of the expansion (5) in (9) yields 

zD _ NB2,4 r __ ~BO~A)/(~A _ ~-B) (10) S G -  H ~B~ 

~ A = y B  at T = T ~  (11) 

where go  and ~ o  denote the center-to-bulk and center-to-surface correla- 
tions, respectively, that is, 

f2 t2 2 eg2~---" S [<O'000"~>2]av' ~g2~ S Wi[<GOffi >0]av (12) 
i~g2 i~0~'2 

Some other variations of the DCC condition can be made. (1~ 

3. C O M P A R I S O N  B E T W E E N  S INGLE-  A N D  
D O U B L E - C L U S T E R  A P P R O X I M A T I O N S  

In the present section, two advantages of the DCA over the ordinary 
single-cluster approximation (SCA) are pointed out. (14) 

In the previous paper (9) we formulated the effective-field theory of spin 
glasses for a single cluster (2, starting from the se/f-consistency condition (9) 
[ < O ' o ) 2 ] a v  = [<O'i)2]av, ViE ~(2. To make discussions simple, we treat here 
another kind of self-consistency condition, 

[J21av ['(O'0)21av = ~2[-(Heff)21av (13) 
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with the assumption (8). This is a straightforward extension of the ordinary 
mean-field approximation/5) J(ao)=/2BHmf in ferromagnets. This yields 

S ZSG = N[32#4#/( I -- fl2[JZ]av ~ )  (14) 

o~=k2T2/[J2]~, at T=TSG (15) 

where # and o ~ are defined by (12). Here and in the following the super- 
script S denotes the quantity obtained through the SCA. Comparing (t5) 
with (11 ) yields the following discussion. 

The temperature dependence of the center-to-surface correlation (12) 
for two clusters of different sizes is shown schematically in Fig. 1. At high 
temperatures where the correlation length r is enough less than the 
cluster size L, the center-to-surface correlation # can be expressed in the 
finite-size scaling form, (16) 

f (L / r  Ld_l  L,n(~_~T))  ~-(T) ==- ~, Wi[<r162 -- V (16) 
i ~ 8(2 

where f is the relevant scaling function. The crossing point 
= k2T2/[J2]~ v gives the approximate critical point TsG by the SCA, or 

(15). The size dependence of TS~(L) is estimated (4) as follows: 

TSG(L) - ~SGT(*)_~ [ ( a + b  log L)/L] 1/~ (17) 

Here we have used the scaling form (16) and the relation r 
( T-T(*)~-~s~ ~ , with ~SGT(*) denoting the true critical point and a,b 
appropriate constants. When we select two clusters of the size L = LA, LB 
with L A < LB, the estimate (17) gives (4~ 

-BBI' 

-IaAI 

0 

T(,) ./TsSG(LB) < TSG(LA) S G  ~ "  

~SG %8 T 
Fig. 1. 

(18) 

Temperature dependence of the surface correlation ~ for the dusters g? = A, B with 
their sizes LA < LB. The behavior in the limit L ~ oo is also shown, 
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On the other hand, near the true critical temperature, the correlation 
length is much greater than the cluster diameter. The center-to-surface 
correlation is saturated at a value proportional to the surface area of the 
cluster, L d- 1. It grows as we increase the cluster size, i.e., 

~ A < ~ S  for L A < L B ~ ( T  ) (19) 

as is shown in Fig. 1. The crossing point YA=o~B gives the critical 
temperature T~c(LA; L~) in the DCA, or (11). Inequalities (18) and (19) 
yield 

rso(L )< rso(LA) (20) SG < 

Then the DCA can yield approximate critical points closer to the true one 
T(s *) than the SCA does, using the same correlation function data. 

In the limit of L ~ o% the center-to-surface correlation o~ vanishes in 
the paramagnetic phase owing to the factor e x p ( - L / i ) ,  while at T =  T(*) - t S G  

, ~ o c L  -(d 2+q) x L d  1=L1 ~--*oo as L--*oo (21) 

Therefore the approximate transition temperature TDo(LA;LB) is expected 
to approach T (*) s~ as LA, LB --+ 0% which can be seen in Fig. 1. For two 
clusters of sizes close to each other, that is, [LA--LBI/LB~I, the 
phenomenology gives (14) 

TDG(La ," L s ) -  --s~T(*) _"~ (c/L)I/~ (22) 

Besides the inequality (20), another advantage of the DCA can be 
pointed out. From the point of view of the coherent-anomaly method 
(CAM), (3'4) attention should be paid to the behavior of the approximation 
as a systematic series. In the CAM, approximation data are fitted to the 
function (3, 4) 

;~sa(L) = C(Tsa(L) - --sGT(*)]! --(Ts-- 1) (23) 

where ?s denotes the fractional critical exponent of the true spin-glass 
susceptibility Z(s~ ), i.e., zsa"(*)-"~ C'(T-Ts(~))  -~s. The quantity )~sG in the lhs 
of (23) denotes the coherent anomaly, which is defined from the behavior 
of the approximate spin-glass susceptibility as follows: 

ZsG(T; L) ~ )~s~(L) �9 Tso(L)/ET- Tso(L)-I (24) 

near and above T -  Tsc(L). It has been pointed out recently, (7,8) however, 
that the logarithmic term in the rhs of (17) may prevent one from fitting 
the data {TSc(L)} and {)~S~(L)} to the function (23) with desirable 
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accuracy. Indeed, in the previous paper {9) we could not obtain a good 
estimate of the exponent 7s for the three-dimensional _+ J model owing to 
the slow convergence of the data. On the contrary, there is no dominant 
logarithmic term in the DCA (22). Then a series of the DCA for clusters 
L A < L s < L c . . .  fitted to the function (23) can be expected to yield 
estimates of ~s~T(*) and 7s more accurately than a series of the SCA does. 

Figure 1 gives a guideline for selecting such a DCA. The first kind of 
DCA with (3)-(7) works quite well for the ferromagnetic systems and 
yields transition points even better than the second kind of DCA with 
(9)-(11). We found, however, that the first kind of DCA (7) for the _+J 
model becomes unstable in view of the above guideline, or Fig. 1. For (7) 
we need to calculate surface-to-surface correlations, which may be strongly 
affected by the existence of frustrations near the corners of the clusters. 
Hereafter the second kind of DCA is mainly used. The selection of the 
clusters was made also under the above guideline. 

The appropriately scaled center-to-surface correlation Y / L  ~-~ shows 
the same behavior as does the quantity gL, which is frequently used in 
analyzing Monte Carlo data. (~7'18) The essential feature of the CAM is that 
the system size L does not appear explicitly in (23) owing to the employ- 
ment of the effective-field theory. The irregularity caused by the shape of 
the clusters can be screened out effectively. In addition, we need not be 
concerned about the definition of cluster size. These are the reasons why 
even small clusters can be used successfully for the CAM-fitting. 

4. C A M  A N A L Y S E S  

In the present section the DCA data are analyzed with the CAM for 
the two-, three-, and four-dimensional _ J  Ising spin glasses; P(J)=_ 
[ 6 ( J -  Jo) + 6(J + J0)]/2. 

4.1. The Two-D imens iona l  System 

It is widely accepted now that the two-dimensional spin glasses with 
a symmetric distribution of interaction signs exhibit no phase transition at 
finite temperatures. The exponent of the singularity at zero temperature is 
well determined (18~1) as 7s ,-~ 5: The Monte Carlo-simulation studies gave 
the estimates 7s=4.5(5), (19) 4.6(5), (18) and 5.1l(5), (2n while the series- 
expansion study yielded the estimate 7s = 5.3(3) .(2o) In the previous paper (9) 
we also obtained a consistent conclusion. 

Here we report the CAM analyses for the DCA data. We assumed the 
zero-temperature transition. The fitting function is ~(n) ~_ ,~/tT(n)~s ~ The 

L S G  ~ / \ ~ S G !  �9 

least-squares fitting for the five data points in Table I(a) yields the dashed 
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line drawn in Fig. 2, or the exponent estimate L=4.62(12) .  There are, 
however, systematic deviations of these data points from the dashed line. 
When we reject the two data points denoted by the open circles in Fig. 2, 
the last three points give the solid line, or the critical data; 

~s = 5.09 _+ 0.09 for ls~'V (, / =- 0 (25) 

where the same error estimation as in the previous paper ml has been made. 
To make a comparison, the SCA data given by (13)-(15) are plotted 
together in Fig. 2. Figure 2 presents an example of the more rapid con- 
vergence of (22) as compared to (17). 

Table I. The Approximate Transition Temperature T(~d and the 
Critical Amplitude ~ G  ) Obtained wi th  the DCA 

Size of the clusters T(s~ ~(n) 

(a)  T w o - d i m e n s i o n a l  _ J  model 

2 . 2  - 3 -  3 1.10481 2.48777 

2 �9 2 - 4 -  3 1.08254 2.75769 

3 �9 3 - 4 -  3 1.01680 3.74232 

3 �9 3 - 4 -  4 0 .963043 5.16371 

4 . 3  - 4 -  4 0 .913502 7.17301 

(b)  Three-dimensional + J  model a 

1 �9 1 �9 1 - 2 . 1  �9 1 2 .07808 0.161403 

1 �9 1 �9 1 - 2 . 2 . 1  2,03303 0 .187139 

2 . 1  �9 1 - 2 . 2 . 1  1.99689 0 .212842 

2 . 1  �9 1 - 2 -  2 . 2  1.93167 0 .271250 

2 . 2 . 1  - 2 -  2 . 2  1.87996 0 .335257 

2 . 2 . 1  - 3 , 2 . 2  1.87847 0 .336528 

2 . 2 . 2  - 3 . 2 . 2  1.87699 0 .338009 

2 . 2 . 2  - 3 -  3 �9 2 1.83368 0 .402585 

3 �9 2 . 2  - 3 -  3 . 2  1.79889 0.471621 

3 . 2 . 2  - 3 . 3 . 3  1 .7440(16)  0.5993 (25)  

3 . 3 . 2  - 3 , 3 . 3  1 .7003(29)  0 .7461(66)  

(c) Four-dimensional ___Jmodel 

1 �9 1 . 1 . 1  - 2 -  1 �9 1 �9 1 2 .51456 0 .100206 

1 �9 1 �9 1 �9 1 - 2 - 2 . 1  �9 1 2 .49370 0 .106266 

2 �9 1 �9 I .  1 - 2 - 2 . 1  �9 1 2 .47680 0 ,111639 

2 - 1 . 1  �9 1 - 2 - 2 . 2 . 1  2 .45175 0 .120644 

2 . 2 . 1  �9 1 - 2 -  2 . 2 . 1  2 .43198 0 .128622 

2 - 2 . 1  - 1 - 2 -  2 . 2 -  2 2.40013 0 .143636 

2 �9 2 . 2 . 1  - 2 -  2 �9 2 -  2 2 .37578 0 .157086 

Here the error bars are due to the random sampling of bond configurations. 
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lo.O5.o ' ~ i ' " .  " . "y" 
Ix 

1 . 0  

0 . 5  

0 . 1  . . . .  I . . . .  ~ , ~ , , I , , ,  I ~  
0.8 1 1.2TI~4 1.6 1.8 2 

Fig. 2. The CAM fitting for the two-dimensional iY model. The DCA data listed in 
TableI(a) are plotted (O and �9 The dashed line denotes the fitting for these five data 
points. The solid line denotes the fitting for the last three data points (Q). The SCA data are 
also plotted (• 

4.2. The Three-Dimensional System 

The existence of the spin-glass phase transition in the three-dimen- 
sional _+ J spin system has been concluded in many works. (17'18'2~ The 
data obtained in the previous paper  (9) also suggest the existence of this 
transition. The critical data, however, have rather large error bars. 

With the DCA we obtained the CAM data listed in Table I(b). The 
last two data points have error bars owing to the random sampling of 
bond configurations. The number  of the samples is about 2.5 • 105, 
where we have used the gauge symmetry. (24) These statistical errors were 
neglected in the fitting because they are comparable to fitting errors. The 
fitting function used here is (6) 

C /(T(n) -- T(*)]Ts 1 T(n) T(*)%ys--2 2 (n) "~ l / \aSG ~tSG I + C2/( -- (26) ~ S G  ~t S G  ) 

where the second term in (26) was added to allow for the behavior away 
from the critical point. These terms do exist as the Taylor series of an 
analytic function. As a result of fittings, the second term in (26) is not so 
small compared to the first. This supports the necessity of the second term 
in the present case. Singular terms with another fractional exponent 0 
( T s > 0 > T s - 1 )  may also exist, ~25) which causes the additional term 
d/( T~")s~ - --s~T(*)~~ 1 !  in (26). This is still an open problem. 

The CAM data ~tT(") ~ " ) ~  can be in terms of other t ' ,  S G ,  A, S G , '  J exp ressed(4'6) 
temperature variables x, e.g., as ~'tK (") ~(")~/ with K =  Jo/kB T. Data  thus ( \  S G ~  L S G I I  

converted were also fitted to the function of the form (26), as in the 
previous paper. (9) The critical data thus obtained scatter in a region as is 
shown in Fig. 3. A discussion about  the error analyses of these data is given 



906 Hatano and Suzuki 

. . . . . . . .  I . . . . .  

2 

* l.E 1.4 
TsG 

Fig .  3. T h e  c r i t i c a l  d a t a  o b t a i n e d  in  t e r m s  of  s o m e  t e m p e r a t u r e  v a r i a b l e s .  T h e  v a r i a b l e  x is 

set to x= T (e), Jo/kBT (�9 tanh(Jo/kBr) (D), tanh2(Jo/kBr) (A), and exp(-Jo/kBr) 
(V). The error bars are estimated by the method of least squares. The inner box (---) denotes 
the error estimates (28); the outer box (...) denotes (27). 

in the Appendix. The final estimates [with "error type B," or (A.6) in the 
Appendix] are 

T(*) 1.18 + 0.19, 7s=  3.3 + 1.1 SG ~ - -  (27) 

The error estimates (with "error type A" in the Appendix), which should 
be compared with the data of the high-temperature expansion c~ 
IT(*) - -1 .2(1) ,  7s =2.9(5)] ,  are given by z S G  - -  

T(*) 1.18+0.04,  7s = 3.3 + 0.4 SG ~ - -  (28) 

with the standard deviation (A.3) of the critical data plotted in Fig. 3. Each 
error bar (28) is below half of the one obtained in the previous p a p e r #  ) 

4.3. The  Four -D imens iona l  Sys tem 

The CAM data for the four-dimensional + J  model are listed in 
Table I(c). Because the range of the approximate transition points is 
narrow, the fitting becomes unstable. The estimate of the exponent deviates 
appreciably by changing temperature variables x. The transition point, 

T(*)--1.92(7).  This value however, can be estimated rather accurately as ~s~  - 
is slightly lower than the estimate ~sGT~*) ---- 2.02(6) by the high-temperature 
series analysis. (2~ We also tested the fitting by fixing T(*)= 2.02. Then the " S t  

exponent was estimated as 7s=2.34(3). This result is consistent within 
error bars with, but slightly greater than, the high-temperature series 
estimate ~, = 2.0(4). This inconsistency may be due to a systematic error 
caused by the smallness of the clusters used in the present analysis. 



Effective-Field Theory of Spin Glasses 907 

5. S U M M A R Y  

The double-cluster approximation for spin glasses has been for- 
mulated. Observing two clusters of slightly different sizes may remind us of 
the renormalization-group approach. (26) The essential difference between 
the CAM and the renormalization-group scheme is the following(4'7): In the 
renormalization-group approach spin degrees of freedom are recursively 
traced out. In contrast, in the CAM we take account of the degrees of 
freedom gradually. 

The discussion in Section 3 is valid for other phase transitions in view 
of the super-effective-field theory3 2) The DCA-CAM can be an efficient 
strategy for studying exotic phase transitions. (14) 

As for _+ J Ising spin glasses, we have confirmed the results obtained 
by other authors (17 23) in two and three dimensions, while in four dimen- 
sions a slight inconsistency was observed between our tentative results and 
the high-temperature series analysis. (2~ 

APPENDIX.  ERROR ESTIMATION OF CRITICAL DATA 
OBTAINED BY C A M  ANALYSES 

When we obtain critical data from a CAM analysis, there are various 
ways to estimate the errors of these critical data. In the present appendix, 
we discuss which estimations should be made. 

In the CAM analyses, data points (T~ 1),)?(1)), (T~Z),)~(z)) .... are fitted 
to the function {6) 

2(,)=cl [x(n)_x~,)r-c~-l)+c2 rx(,,)_x~,)l-(./ 27+ ... (A.1) 

where the temperature variable x is set equal to T, J/kBT, tanh(J/k~ T), 
and so on. (4'6) [The weak singular terms in the rhs of (A.1) are omitted in 
many cases.] Then we obtain a set of critical data iT(*)+AT(*) t - - c ( x )  - -  c(x), 

7(x)-+ Ay(x)), where the subscript (x) denotes the temperature variable used 
in the fitting. The situation is schematically shown in Fig. 4(i). The error 
bars here are estimated from the least-squares fitting. 

The first candidate for the error estimates (referred to as error type A 
in the following) is the standard deviation (9) of the data {7(x)}. The final 
estimate of the value 7~nal itself is determined in the following form: 

7(x) / V  1 (A.2) 
~final -~" Zx ( A ~ / x ' ~  (zJ~(x)) 2 

where F.x denotes the summation over the kind of the variables {x}. The 
weight (AT(xf1-2 is introduced here, which represents the reliability of the 
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Y 

(i) (ii) (iii) ( ~  (v) 

Fig. 4. Some variations of the error estimates of the critical data obtained by the CAM 
analyses. (i)The original critical data obtained by the method of least squares in terms of 
some temperature variables {x}. The error bars here are the fitting errors appearing in the 
method of least squares. (ii)The average (A.2) with the standard deviation (A.3), which is 
referred to as error type A in the text. (iii) The most reliable critical data with its fitting error 
(A.5), which is referred to as error type B. (iv)The average (A.2) with the average of fitting 
errors (A.6), which is also referred to as error type B. (v) The error bar including all the fitting 
errors of the original data. 

value ?(x). The  s t a n d a r d  devia t ion  is ob ta ined  as follows [Fig .  4( i i ) ]  for 

e r ror  type A: 

Fv 1 ] 2 
( / [ ~ f i n a l )  2 ~ ~ 2 (A.3) 

L x /x --  oal 

The final es t imates  of the values T (*) and  A T  (*) c, final c, final are de te rmined  in the 
same way. No te  tha t  the abso lu te  values of the fi t t ing er rors  {37(x)} do not  
affect the final es t imates  ATnnal; only  their  ra t ios  do. This es t imate  of the 
e r ror  A?nnal is in te rpre ted  as follows: In the present  case the d a t a  r T ( , )  ~. ~c(x)J 
and  {~(x)} scat ter  because  of changing  the t empera tu re  var iables  x. The  
var iable  x can be expressed in terms of ano the r  t empera tu re  var iable  x '  in 
the form xc  - x~ *) ~- a(x'c - X'c ~*)) + b(x'c - x'~ (*))2 + . . . .  W h e n  we change 
the t empera tu re  var iable  x in the fi t t ing funct ion (A. 1 ), we effectively al low 
for less-s ingular  terms. Then  the e r ror  of type  A is caused by  the lack of 
knowledge  a b o u t  the behav io r  of the coherent  a n o m a l y  away  from the true 
s ingular  po in t  T~*). 

The  coun te rpa r t  of the e r ror  of type A appea r s  in the Pad~ analysis,  
which is usual ly  used for the d a t a  ob ta ined  by  the h igh- tempera tu re  expan-  
sion. (2~ One  can make  some var ia t ions  of the Pad~ a p p r o x i m a t i o n  by 
adjus t ing  the n u m b e r  of terms in the n u m e r a t o r  and  d e n o m i n a t o r  of the 

Pad~ a p p r o x i m a n t :  

1 +  Cn xn 1 +  bm xm - - 1 +  ~ akxk-}"O(x N+I) (A.4) 
n = l  m = l  k = l  
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Critical data thus obtained scatter within a region. Changing the number 
M in the Pad6 approximant (A.4) means changing the coefficients of 
the higher-order terms O(x N+ 1) in the rhs of (A.4). Then their standard 
deviation corresponds to the error type A mentioned above. In contrast 
in the finite-size scaling analyses of Monte Carlo data, one usually 
assumes(iV 19,21,22) only the most singular term and does not allow for the 
error of type A. 

Another candidate for the error estimation (referred to as error type B 
,~T(*) in the following) is the use of the absolute values of the fitting errors ~ ~ c(~ 

and AT(x). Some kinds of error type B are defined in the following. 
If one interprets the value of Ay(x) as the reliability of the value ,v(x), 

the most reliable value is the datum 7(x0) whose fitting error AT(~0) is the 
minimum among others {AT(~)}. This leads to the following choice of the 
final estimates [Fig. 4(iii)]: 

error type BI: )~final ~ -  ] ) ( x 0 ) ,  ATfina 1 = Ay(xo ) (A.5) 

where Vx, dy(xo)<~A~,(x). In many cases the choice of the temperature 
variable x = T minimizes the fitting errors. 

Another choice of the estimation of error type B can be made as the 
"average" of the fitting errors. With the average value defined by (A.2), one 
estimates its error as follows [Fig. 4(iv)]: 

error type B 2 : ( A T f i n a l ) - 2  = [ 2  (AT(x~)-21/(N ~ -  1) (A.6) 
x 

where Nx is the number of kinds of temperature variables {x}. 
The largest error bar is determined so as to include all the fitting 

errors ~AT(*}~c(x) and A?'~x~ for various variables {x} [Fig. 4(v)]. The final 
estimate of the critical datum itself is obtained as the midpoint value of the 
error bar. This estimate is too rough, because a shift of the true value by 
the amount of this error has a fairly small probability. 

All the error estimations of type B defined above are based on the 
fitting errors. Generally speaking, the fitting errors in the method of least 
squares come from two origins: the irregularity of the fitted data and the 
finiteness of the number of the data. The former means zigzag behavior of 
the fitted data, while the latter means that a little shift of fitting parameters 
does not lead to very bad fits. The error estimates stated in Monte Carlo 
studies (17-19'21'22) correspond to the latter. Though the Pad6 analysis yields 
no fitting errors, error of the same type exists latently. The error estimation 
by changing the number of terms of the Pad6 approximants does not 
indicate the convergence of the series. If one can calculate higher-order 
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terms, the critical data may shift beyond the error estimate of type A, 
which was also noted in ref. 20. 

Finally, there may be another source of systematic errors, that is, a 
nontrivial correction-to-scaling exponent, (25) which is mentioned below 
(26). To include such a term in the analysis, one needs to execute a rather 
extensive calculation for getting many data points. Because of the limita- 
tions of computers, this correction term usually cannot be taken into 
consideration in CAM analyses (9) or in finite-size scaling analysesJ 17 19,22) 

Summarizing the above discussions, we should note the type of error 
when we compare the critical data obtained from the CAM analyses with 
those from other analyses. 
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